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In this work we study one family of liquid states of k-orbital SU�N� spin systems, focusing on the case of
k=2 which can be realized by ultracold alkaline-earth atoms trapped in optical lattices, with N as large as 10.
Five different algebraic liquid states with selectively coupled charge, spin, and orbital quantum fluctuations are
considered. The algebraic liquid states can be stabilized with large enough N and the scaling dimension of
physical order parameters is calculated using a systematic 1 /N expansion. The phase transitions between these
liquid states are also studied and all the algebraic liquid states discussed in this work can be obtained from one
“mother” state with SU�2��U�1� gauge symmetry.
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I. INTRODUCTION

Spin liquid state as an exotic quantum ground state of
strongly correlated systems has been studied for decades.1,2

Spin liquid state is defined as the ground state of a quantum
spin many-body system that does not break any symmetry
while having topological orders or stable algebraic correla-
tions that cannot be understood using the standard Ginzburg-
Landau theory. Thanks to the active search for spin liquids
in materials in the last few years,3,4 people are encouraged
to believe in the existence of spin liquids in nature. The
stability of spin liquid usually relies on large number of
matter fields which suppress the continuous gauge-field
fluctuations. For instance, in the famous organic salts
�-�ET�2Cu2�CN�3,3,4 one of the proposed candidate spin liq-
uid involves a spinon Fermi surface, where the finite density
of states of matter field tends to suppress the U�1� gauge
field.5,6 When the spinon Fermi sea shrinks to a Dirac point,
one needs to introduce large enough flavor number �Nf� of
Dirac fermions to stabilize the spin liquid, and a systematic
1 /Nf expansion can be used to calculate physical quantities.
However, large Nf is difficult to realize in SU�2� spin system,
therefore one is motivated to look for systems with large spin
symmetries. Tremendous theoretical and numerical efforts
were made on SU�N� and Sp�N� spin systems with large
N.7–16

It was proposed that spin-3/2 cold atoms can realize
Sp�4�–SO�5� symmetry without fine tuning.17 Recently it has
been discovered that an exact SU�N� spin symmetry with N
as large as 10 can be realized with alkaline-earth cold atoms
without fine tuning any parameter.18 Because the electrons
carry zero total angular momentum in alkaline-earth atoms,
all the spin components belong to nuclear spins, and hence
the interaction between atoms are totally independent of the
spin components, i.e., the system has SU�N� symmetry with
N=2S+1 for nuclear-spin S. Therefore if alkaline-earth cold
atoms are trapped in an optical lattice, the spin model natu-
rally has the SU�N� symmetry,18 therefore this is a very
promising system to realize the long-sought spin liquids. Be-
sides the SU�N� spins, there is another orbital degree of free-
dom associated with the alkaline-earth atoms because both
the 1S0 and 3P0 orbital levels �denoted as g and e, respec-
tively� have SU�N� spin symmetry. The minimal model of
this system on optical lattice is given by Eq. 2 in Ref. 18,

H = �
�i,j��,m

− t�ci�m
† cj�m + H.c. + �

j,�

U��

2
nj��nj� − 1�

+ V�
j

njenjg + Vex �
j,m,m�

cjgm
† cjem�

† cjgm�cjem, �1�

where m=1. . .N is the SU�N� spin index, e and g represent
1S0 and 3P0 orbitals, respectively. U��, V, and Vex can be
calculated from the s-wave scattering lengths between atoms.

Most generally this model, Eq. �1�, has symmetry
SU�N�s�U�1�c�U�1�o. In addition to the spin SU�N�s sym-
metry, U�1�c is the symmetry transformation ci�m
→ci�m exp�i��, which corresponds to the conservation of the
total atom number, i.e., the charge U�1� symmetry; U�1�o is
the transformation cigm→cigm exp�i��, ciem→ciem exp�−i��,
and it corresponds to the conservation of ne−ng, i.e., the
orbital U�1� symmetry. We will tentatively assume the sys-
tem has an extra orbital Z2 symmetry corresponding to
switching e and g, i.e., exp�i �

2 �x�, therefore we take the hop-
ping amplitude of these two orbitals to be equal, also the two
intraorbital Hubbard interactions are equal. Weak violation
of this Z2 symmetry will be discussed in this paper, and we
will show that it is irrelevant to the main physics discussed in
this paper. Under these assumptions, after straightforward al-
gebraic calculations the Hamiltonian in Eq. �1� can be rewrit-
ten as

H = �
�i,j��,m

− tci�m
† cj�m + H.c. + �

i

U�ni − n̄�2 + �
a

J�Ti
a�2

+ Jz�Ti
z�2. �2�

Here �=e ,g is the orbital index. Here ni=��mni�m is the
total number of the atoms on each site, Ti

a=ci�m
† ���

a ci�m is
the pseudospin vector of orbital levels. U, J, and Jz are
simple linear combinations between U, Vex, and V in Eq. �1�.
J and Jz terms are allowed to exist because otherwise the
system will have an unphysical SU�2N� symmetry which
mixes both orbital and SU�N� spin. Equation �2� is the start-
ing point of our study, and since all the fermionic alkaline
atoms under study carry half integer nuclear spins,18 N will
be taken to be even hereafter in our paper.

In order to obtain more solid and quantitative results, we
will keep both orbitals of the atoms at half filling, i.e., n̄
=N and �iTi

z=�ini,e−ni,g=0. We will also put this model on
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a honeycomb lattice with only nearest-neighbor hopping
considered. Therefore on top of the global symmetries dis-
cussed before, there is another particle-hole symmetry with
cj�m→� jcj�m

† , and � j =1 and −1 with j belonging to sublat-
tices A and B, respectively. If t is the dominant energy scale
of the Hamiltonian, it is well known that the half-filled fer-
mions on honeycomb lattice is a semimetal with two Dirac
valleys in the momentum space located at Q� = �	 4�

3 ,0�, and
at low energy the band structure can be described by the
Dirac fermion Lagrangian

L = �
a=1

4N


̄a����
a,��0,�1,�2� = �z,y,− x� . �3�

The 2�2 Dirac matrices i are operating on the two sites in
each unit cell on the honeycomb lattice. The Dirac fermion
has two Dirac points at the corners of the Brillouin zone,
therefore there are in total Nf =4N flavors of two-component
complex Dirac fermions. If we rewrite the Dirac fermion in
terms of Majorana fermions 
=�1+ i�2, the free fermion La-
grangian, Eq. �3�, has an enlarged O�8N� flavor symmetry.
The short-range interactions between the Dirac fermions are
irrelevant at the free Dirac fermion fixed point.

In the following we will mostly be focusing on the Mott
insulator phase of Eq. �2� with U dominant. Motivated by the
spin liquid and weak Mott insulator �-�ET�2Cu2�CN�3,4,19 we
want the system to be close to the Mott transition so that at
short distance it still behaves like a semimetal, while at long
distance the electron ci�m fractionalizes. With J=Jz=0, the
existence of a fractionalized phase close to the Mott transi-
tion on the honeycomb lattice was shown with a slave rotor
calculation in Ref. 19, and the fractionalized spinon has the
same mean-field band structure as the Dirac semimetal. In
our system with nonzero J and Jz, various strongly correlated
liquid states with coupled spin, charge, and orbital fluctua-
tions can be realized in different parameter regimes of Eq.
�2�, and all the liquid states can be obtained from the U�1�
�SU�2� spin liquid that will be studied first.

II. LIQUID STATES

A. U(1)ÃSU(2) spin liquid, the mother state

As the first example of liquid state, let us take both U, J
dominate t, while keeping Jz=0 tentatively. In this case the
symmetry of Eq. �2� is enhanced to SU�N�s�U�1�c
�SU�2�o. When U and J both dominate the kinetic energy,
the system forbids charge fluctuations away from half filling
n=N on each site, and also forbids orbital-triplet fluctuations,
i.e., the low-energy subspace of the Hilbert space only con-
tains orbital SU�2�o singlet. The Young tableau of the SU�N�
representation on each site has two columns with N /2 boxes
each column �recall that we always consider the case with N
even�, which is a large-N generalization of SU�2� spin-1
�Fig. 1�a��. The half-filling constraint on the low-energy Hil-
bert space implies that one can do a local U�1� rotation on
the fermions, which will be manifested by introducing a U�1�
gauge field a� coupled to the charge degree of freedom as
usual. The orbital-singlet constraint on each site implies that
the local SU�2�o transformation will not change the physical

state, and this local invariance can be described by a SU�2�
gauge-field coupled to the orbital indices of ci�m.

More formally, one can introduce the bosonic U�1� slave
rotor bi and SU�2� slave rotor, 2�2 matrix field h��, as well
as fermionic spinon f i�m as follows:19

ci�m = bih��f i�m. �4�

We will call b the chargeon and h�� the triplon field. h is a
group element of SU�2� with SU�2�L�SU�2�R transforma-
tion: h→MLhMR. The SU�2�L symmetry is the physical
SU�2�o symmetry of the orbitals, while the SU�2�R symmetry
is a local SU�2� gauge symmetry, which leaves the physical
operator ci�m invariant with an accompanied SU�2� gauge
transformation on f i�m: f →MR

−1f . The chargeon bi grants
the spinon f i�m a U�1� gauge symmetry as usual bi→bie

i�i,
f i�m→ f i�me−i�i, and bi also carries the U�1�c charge, i.e., bi
will couple to the external electromagnetic field if the fermi-
ons ci�m were electrons. The properties of U�1� and SU�2�
slave rotors were discussed in Refs. 19 and 20, respectively,
although the SU�2� slave rotors in Ref. 20 was engineered
from a very different setup.

The U�1� and SU�2� gauge symmetry can be manifested
by reformulating the hopping term of Eq. �2� using the de-
composition of fermion operator Eq. �4�,

H = �
�i,j�

− tbi
†bjf i�

† hi��
† hj��f j� + H.c. �5�

And spinon f i�m hops effectively in a band structure de-
scribed by the following mean-field Hamiltonian

H = �
�i,j�

− t�Uij,���f i�
† f j� + H.c.,

�Uij,��� = �bi
†bjhi��

† hj��� . �6�

The value of �Uij,��� should be solved self-consistently. If
the self-consistent solution �Uij,�������, the U�1� and

d

Boxes
N/2

a b

c

FIG. 1. �a� The Young tableau of the representation of N SU�N�
fermions on each site when orbital is constrained to be SU�2�o

singlet, N has to be an even number. ��b�–�d�� Feynman diagrams
which contribute to the RG flow of the velocity anisotropy, Eq.
�14�, the solid square stands for the vertex �3�k�k.
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SU�2� symmetries are preserved by this mean-field solution.
And the fluctuation on the mean-field solution is the gauge

fields: Uij,����Uij,���e−iaij−�l=1
3 iAij

l
l/2. The dynamics of slave

rotor b and h�� are given by the mean-field decompositions
−tbi

†bj�f i�
† hi��

† hj��f j�� and −thi��
† hj���bi

†bjf i�
† f j��, respectively.

In the Mott insulator phase but close to the Mott transi-
tion, the spin model after second order t /U perturbation will
be very complicated. However, there is another self-
consistent way of studying this system. Motivated by the
existence of the spinon Fermi sea of weak Mott insulator
�-�ET�2Cu2�CN�3, we assume here the weak Mott insulator
phase is a phase in which the chargeon bi and triplon h are
both gapped, and the fermionic spinon f i�m fills the same
mean-field band structure as the original fermions ci�m in the
semimetal phase with Nf =4N flavors of two-component
Dirac fermions at low energy �Eq. �3��, and then we can
check the stability of this state. This spin liquid state corre-
sponds to a mean-field solution �bi

†bjhi��
† hj���=U���, which

preserves the U�1� and SU�2� gauge symmetry. After taking
into account of the U�1� and SU�2� gauge fluctuation, the
low-energy field theory of this spin liquid is described by the
following 2+1D electroweak theory like Lagrangian,

Lew = �
a=1

2N


̄a��	�� − ia� − �
l=1

3

iA�
l �l

2


a + ¯ . �7�

Here ��0 ,�1 ,�2�= �z ,y ,−x�. 
 is the low-energy mode of
spinon f , and 
1=ei�4�/3�xf , 
2=e−i�4�/3�xiyf . Unlike Eq. �3�,
in Eq. �7� each Dirac fermion 
 is a four component fermion,
because it contains both the Dirac indices and SU�2� gauge
indices.

The global symmetry of Eq. �7� is SU�2N�, which is a
combined symmetry of SU�N� spin symmetry and Dirac val-
ley rotation. 
 transforms nontrivially under translation,
space reflection, rotation, time reversal, and particle-hole
transformation as follows:

Tr1:x → x + 1,
 → ei�4�/3��z

 ,

Tr2:x → x +
1

2
,y → y +

�3

2
,
 → ei�2�/3��z


 ,

T:t → − t,
 → �1�y
,a�, → − a�,

A�
1 ,A�

3 → − A�
1 ,− A�

3 ,

Pā,x:x → − x,
 → �1�r�ā · �� �
,a1,A1
l → − a1,− A1

l ,

Py:y → − y,
 → �2�z
,a2,A2
l → − a2,− A2

l ,

PH:cj�m → � jcj�m
† ,
 → �2�x
†,a� → − a�,

A�
1 ,A�

3 → − A�
1 ,− A�

3 ,

R2�/3:
 → ei�2�/3��0

 . �8�

�a are three Pauli matrices that operate on the two Dirac
valleys. Notice that the hexagons of the triangular lattice

form a triangular lattice with three sublattices and Pā,x is the
reflection centered at sublattice ā of the three sublattices.
Vectors r�1= �0,1�, r�2= �

�3
2 ,− 1

2 �, and r�3= �−
�3
2 ,− 1

2 �. In the
equation above, transformations of gauge-field components
are not shown unless they transform nontrivially. R2�/3 is the
hexagon centered rotation by 2� /3. Notice that time-reversal
transformation �T� always comes with a complex-conjugate
transformation, and hence T only changes the sign of the
SU�N� as well as SU�2�o generators that are antisymmetric
and purely imaginary, therefore the SU�N� and SU�2�o Lie
algebras are preserved.

The gauge symmetry and global symmetry together guar-
antee that none of the apparently relevant perturbations like
fermion bilinears exists in the Lagrangian, Eq. �7�. When N
is large enough the Lagrangian in Eq. �7� is a conformal field
theory �CFT�. The ellipses in Eq. �7� include all the gauge-
invariant four fermion interaction terms which break the
SU�2N� global symmetry down to the symmetries of the mi-
croscopic Hamiltonian, Eq. �2�. All these four fermion inter-
actions are irrelevant for large enough N. This CFT fixed
point is a pure spin liquid state because both the charge and
orbital fluctuations are forbidden. The scaling dimension of
gauge-invariant physical order parameters at this CFT fixed
point can be calculated using a systematic 1 /N expansion in
a similar way as Refs. 11, 13, and 21, with the results,

�ew�
̄
� = 2 +
128

3N�2 , �ew�
̄Tew
A 
� = 2 −

64

3N�2 . �9�

Here Tew
A is the generator of the SU�2N� flavor symmetry.

SU�2N� current operators 
̄��Tew
A 
 gain no anomalous di-

mension from gauge fluctuations. The order parameters of
many competing orders are classified as fermion bilinears of
this spin liquid states. For instance, the three sublattice
SU�N� columnar valence-bond solid �VBS� order parameter

is 
̄�x
 plus two other degenerate configurations after trans-
lation along x direction. The SU�N� ferromagnetic and anti-

ferromagnet �AF� order parameter are 
̄�0Ta
 and 
̄�zTa
,
with a=1. . .N2−1. We can see that the VBS and the AF
order parameters have the same scaling dimension and it is
smaller than the scaling dimension of FM order parameter
based on the 1 /N expansion. When the four fermion interac-
tion is strong enough there is a transition toward a phase
characterized by one of the fermion bilinear order param-
eters.

We took Jz=0 at the beginning of this section, but the
algebraic spin liquid discussed here is stable against small Jz,
because Jz will not introduce any gauge-invariant relevant
perturbation to the field theory, Eq. �7�. For instance, all the
fermion bilinears are ruled out by gauge symmetries and
symmetries in Eq. �8� already. Therefore a small Jz only
renormalizes four fermion terms to Lagrangian, Eq. �7�.
More physically speaking, turning on small Jz will not allow
any orbital triplon state in the low-energy Hilbert space,
therefore the U�1��SU�2� gauge-field formalism is still ap-
plicable.

For the same reason as the previous paragraph, if we in-
troduce a small perturbation that breaks the orbital Z2 sym-
metry exchanging the two orbital levels, no extra relevant
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gauge-invariant perturbations on Eq. �7� can be induced. This
is simply because that the spinon 
 does not carry any physi-
cal orbital charge, therefore a small Z2 symmetry breaking
will not be reflected in the CFT. For instance, in the semi-
metal phase the Z2 symmetry breaking will lead to a velocity
anisotropy between two orbitals: ��i,j��tci

†�zcj. Written in
terms of fractionalized quantities, this term reads
��i,j��tbi

†bjf i�
† hi��

† ���
z hi��f i�, which breaks the global

SU�2�o=SU�2�L symmetry but still preserves the SU�2�
gauge symmetry. The linear order effect of the �t term on the
spinon band structure is proportional to �bi

†bjhi��
† ���

z hi���
and this expectation value is evaluated in the spin liquid
state. Since the spin liquid state is invariant under the Z2

symmetry ei��/2��x
, �bi

†bjhi��
† ���

z hi���=0, hence at the linear
order the band structure of f is unchanged. In fact, the ve-
locity anisotropy ��i,j��tci

†�zcj can lead to the following
gauge invariant but “Lorentz symmetry” breaking coupling
in addition to the field theory, Eq. �7�,

�L = �
m=1

3

s Tr�h†�zh�m�
̄�m�k	�k − iak − �
l=1

3

iAk
l �l

2


 ,

�10�

where k is x or y. Tr�h†�zh�m� is odd under the orbital Z2

transformation �z→−�z or exp�i �
2 �x�. Therefore as long as

the SU�2� slave rotor h remains gapped, this term only in-
duces irrelevant term after integrating out the gapped h.
However, as we will see in the next section, after the con-
densation of h, an anisotropic velocity of the spin liquid will
be induced, and we have to evaluate this anisotropy with
renormalization group �RG� equation.

SU�2� gauge field has been introduced in SU�2� and more
generally Sp�2N� spin systems with single orbital,20,22–24 but
there the local SU�2� gauge symmetry is a transformation
mixing particle and holes of spinons, and hence there is no
extra U�1� gauge field as in Eq. �7�. This particle-hole SU�2�
gauge symmetry has no straightforward generalization to
larger non-Abelian gauge symmetries. In our case the SU�2�
gauge field stems from the physical orbital degeneracy, and a
straightforward generalization to SU�k� gauge field with k
orbitals can be made, as long as the Hamiltonian favors a
total antisymmetric orbital state. In this case we can again
decompose ci�m as ci�m=bih��f i�m with h�SU�k�. When k
is large the SU�k� gauge field tends to confine gauge charges
and controlled calculations are difficult. However, here
SU�k� gauge-field fluctuation corresponds to the constraint of
antisymmetric orbital state, which is analogous to large S of
SU�2� spin system with antisymmetric orbitals. Therefore the
gauge confined phase could be a semiclassical spin-ordered
phase.

The credibility of the U�1��SU�k� gauge-field formalism
can be tested in one dimension, where many results can be
obtained exactly. For instance, one of the fixed points of
k-orbital SU�N� spin chain is described by the Wess-Zumino
�WZ� model of SU�N� group at level k.25 At the SU�N�k fixed
point, the exact scaling dimension of the Neel order param-
eter is �= N2−1

N�N+k� . If we apply the U�1��SU�k� gauge-field
formalism to this spin chain, the first-order 1 /N expansion

gives the scaling dimension of Neel order �=1− k
N , which is

consistent with the exact result. The equivalence between
WZ theory and the constrained fermion was proved in Ref.
26. In one-dimensional spin chains, the WZ fixed point is
usually not stable27 with half filling, in the U�1��SU�k�
gauge-field formalism this instability is due to the relevant
umklapp four-fermion terms for arbitrarily large N. However,
in 2+1D all the four-fermion interactions are irrelevant with
large enough N, therefore at the field theory level the spin
liquid is more realistic in 2+1D than 1+1D.

Recently it was proposed that the most general ground
state for SU�N� Heisenberg magnet with fundamental repre-
sentation on each site is a gapped chiral spin liquid.28 A
chiral spin liquid can be obtained by spontaneously develop-
ing time-reversal and reflection symmetry-breaking fermion

gap 
̄
 in the U�1��SU�2� algebraic spin liquid, which will
lead to the Chern-Simons topological field theory for the
gauge fields.

The U�1��SU�2� spin liquid state is very constrained
since both the half-filling constraint and SU�2�o singlet con-
straint are imposed on each site of the lattice. In the follow-
ing we will study several other liquid states in the same
system, which can be obtained from softening part of the
constraints on the U�1��SU�2� spin liquid state. Therefore
the U�1��SU�2� spin liquid state is the “mother” state of
everything else in this paper.

B. U(1) spin-orbital liquid

Now let us take U large while keeping J and Jz small.
When U becomes dominant, the system forbids charge fluc-
tuations, but allows for coupled spin and orbital fluctuations.
In this case we can just introduce chargeon bi and spinon f i�m

�1�

as ci�m=bif i�m
�1� with a local U�1� gauge symmetry. Here the

spinon f i�m
�1� is equivalent to ��hi��f i�m with f i�m defined in

the previous section. Therefore the new spinon does not
carry any SU�2� gauge charge but carries the physical SU�2�o
charge. If the fermionic spinon f i�m fills the same mean-field
band structure as the original fermions ci�m, i.e., �bi

†bj� is a
constant, the low-energy field theory of this spin-orbital liq-
uid is described by the following three-dimensional �3D�
QED Lagrangian,

Lqed = �
a=1

4N


̄a����� − ia��
a + ¯ �11�

with global flavor symmetry SU�4N�. The existence of this
phase has been shown with a U�1� slave rotor mean-field
calculation in Ref. 19. This type of Lagrangian has been
studied quite extensively in the past because several other
spin liquid states also have the 3D QED as their low-energy
effective-field theory.11,13,21 It is well-known that when Nf
=4N is larger than a critical number, the 3D QED is a CFT.29

Since this CFT fixed point involves both spin and orbital
degrees of freedom �but no charge fluctuation�, we will call
this CFT fixed point a U�1� spin-orbital liquid.

In the well-known staggered flux state of SU�2� spin sys-
tem, Nf =4,11,21,24 while in the spin-orbital liquid states of
alkaline-earth atoms under study, Nf =4N can be as large as
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40, therefore it is a much more promising system to realize
this CFT. The first-order 1 /Nf expansion gives us the follow-
ing results for the scaling dimensions:

�qed�
̄
� = 2 +
32

3N�2 , �qed�
̄Tqed
A 
� = 2 −

16

3N�2 .

�12�

Tqed
A is the generator of the SU�Nf� flavor symmetry group.

Again the SU�Nf� current 
̄��Tqed
A 
 gains zero anomalous

dimension. We can compare the U�1� gauge-field formalism
and 1 /N expansion to the exact result of SU�2N� chains in
one dimension, and the 1 /N expansion gives the exact result
as WZ model at level k=1.

Now let us again introduce the Z2 symmetry-breaking per-
turbation ��i,j��tci

†�zcj =��i,j��tbi
†bjf i

�1�†�zf j
�1�. Unlike the

U�1��SU�2� spin liquid discussed in the previous section,
since �bi

†bj��0, now this Z2 symmetry breaking will intro-
duce the following gauge-invariant perturbation to the field
theory, Eq. �11�, which cannot be absorbed by rescaling 
,

�L = s
̄�3�k��k − iak�
 , �13�

here k=x ,y only includes the spatial coordinates. Physically
this term corresponds to the velocity difference between the
e and g orbitals, and it can be viewed as Eq. �10� after the
condensation of SU�2� slave rotor h. We can evaluate the RG
flow of this term at the order of 1 /N trough Feynman dia-
grams Figs. 1�b�–1�d�, as was done in Ref. 11. And the result
is that

ds

d ln l
= −

16

15�2N
s . �14�

Therefore this perturbation is irrelevant under RG flow.
Now if we gradually increase J in Eq. �2�, finally the

orbital triplons will be excluded from the low-energy Hilbert
space, and the U�1��SU�2� spin liquid state discussed in the
previous section becomes the candidate ground state. The
phase transition between the U�1��SU�2� spin liquid and
the U�1� spin-orbital liquid can be driven by condensing the
triplon field h��, which can also be parametrized as h=�0I
+ i�1�1+ i�2�2+ i�3�3, �� is a real O�4� vector and �a are
Pauli matrices. Further we can define CP�1� field z= �z1 ,z2�t,
and z1=�0− i�3, z2=�2− i�1. Now this phase transition can
be described by the following Lagrangian:

L = Lew + �	�� − �
l=1

3

iA�
l �l

2

z�2

+ rzz2 + ¯ �15�

with critical point r=0. Lew is given by Eq. �7�. After the
condensation of z, all three SU�2� gauge field A�

l will be
higgsed and gapped out, and the remnant gauge field is a�.
Based on the definition of f in Eq. �4�, the condensation of
h�� implies that f �1� and f becomes equivalent after a global
SU�2� rotation. This phase transition is beyond the Landau’s
theory because neither side of the phase transition can be
characterized by an order parameter. For general SU�k�
gauge symmetry with k�2, condensation of matrix field h��

always gaps out all components of non-Abelian gauge fields.

Since the fermion number in Lew is large, one can use a
systematic 1 /N expansion to study the universality class of
the transition, Eq. �15�, and the large fermion flavor number
will suppress the SU�2� gauge fluctuations. For instance, in
the large-N limit, we can view the SU�2� gauge field com-
pletely suppressed, then the transition described by Eq. �15�
belongs to the 3D O�4� universality class. Notice that other
gauge invariant and symmetry allowed couplings between z
and 
 are at very high order, and hence are irrelevant at this

transition. For instance, coupling z2
̄�0
 violates the
particle-hole symmetry. And the Z2 symmetry breaking term
Eq. �10� is also irrelevant at this transition due to its high
scaling dimension from power counting.

The phase transition between the ordinary Dirac semi-
metal phase and the U�1� spin-orbital liquid phase can be
driven by condensing the chargeon b in Eq. �4� described by
Lagrangian

L � Lqed + ��� − ia��b2 + rbb2 + ¯ , �16�

Lqed is given by Eq. �11�. The condensation of chargeon b
will higgs the U�1� gauge field a� and release the charge
fluctuation from the constrained Hilbert subspace. In the
large-N limit when the gauge-field fluctuation is frozen by
fermions, Eq. �16� is a 3D XY transition. The velocity aniso-
tropy, Eq. �13�, is an irrelevant perturbation at this transition
as well, because the fluctuation of b will not affect the RG
equation, Eq. �14�, at the order of 1 /N. A similar metal and
weak Mott insulator transition is studied in Refs. 30–32,
where the condensation of the chargeon rotor b kills the U�1�
gauge-field fluctuation, and drive the Mott insulator with
spinon into an ordinary metal.

C. SU(2) spin-charge liquid

The next situation we will consider is to keep J large, and
make Jz and U small. In this case the system forbids triplon
excitations but charge excitations are allowed. We can intro-
duce spinon f �2� as ci�m=hi��f i�m

�2� , and h�� is the same SU�2�
slave rotor as introduced in Eq. �4�, while f i�m

�2� is equivalent
to bif i�m. This spin-charge liquid state has mean-field solu-
tion �hi��

† hj�������, and at low energy can be described by
Dirac fermions coupled with only SU�2� gauge field with a
QCD like Lagrangian

Lqcd = �
a=1

2N


̄a��	�� − �
l=1

3

iA�
l �l

2


a + ¯ . �17�

Since this state involves both spin and charge excitations, we
will call it a spin-charge liquid. At first glance, the global
symmetry in Eq. �17� is SU�2N��U�1�, but the true symme-
try is actually Sp�4N��SU�2N��U�1�, and this Sp�4N�
group is a subgroup of the O�8N� symmetry group of the
Dirac fermions in the semimetal phase without coupling to
any gauge field. The enlarged Sp�4N� symmetry was dis-
cussed in Ref. 12 in the �-flux state of Sp�2N� magnets with
the same field theory as Eq. �17�.

The Sp�4N� symmetry not only contains the explicit
SU�2N� flavor symmetry of Eq. �17�, but also involves the
pairing channel of 
, because now there is no U�1� gauge
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field, and the gauge singlet Cooper pairs of 
 are physical
operators. When k=2, The physical order parameters have
scaling dimensions

�qcd�
̄
� = 2 +
32

N�2 , �qcd�
̄TA
� = 2 −
16

N�2 . �18�

TA�SU�2N�, and there are other fermion pairing bilinears

with the same scaling dimension as 
̄TA
 due to the enlarged
Sp�4N� symmetry. The enlarged symmetry is special for k
=2, for QCD Lagrangian with SU�k� gauge group with k
�2, since it is impossible to form SU�k� singlet Cooper pair,
the global symmetry is the apparent SU�2N��U�1� symme-
try.

Again the SU�2� spin-charge liquid can be obtained from
the U�1��SU�2� spin liquid by “releasing” the charge de-
gree of freedom, through condensing chargeon field bi in Eq.
�4�. The Lagrangian is similar to Eq. �16�,

L � Lew + ��� − ia��b2 + rbb2 + ¯ . �19�

After the condensation of b, f , and f �2� are identical based on
their definitions. The transition between the SU�2� spin-
charge liquid and the ordinary semimetal phase can be de-
scribed by condensing triplon z� from the SU�2� spin-charge
liquid state, with Lagrangian similar to Eq. �15�,

L � Lqcd + �	�� − �
l=1

3

iA�
l �l

2

z�2

+ rzz2 + ¯ . �20�

After the condensation of the CP�1� field, physical fermion
ci�m and spinon f i�m

�2� are identical after a global SU�2� rota-
tion. In the large-N limit, Eqs. �19� and �20� describe a 3D
XY and 3D O�4� transition, respectively. A similar orbital Z2
breaking term is present in the field theory, Eqs. �17� and
�20�, but again this term only leads to irrelevant effects.

D. U(1)ÃU(1) spin-orbital liquid

If J is small compared with t, while both U and Jz are
much larger, then although the charge fluctuation will still be
forbidden, the Hamiltonian gives a green light to one com-
ponent of the orbital triplet state: the state �e ,g�
+ g ,e�� /�2 with Tz=0. Therefore there are two U�1� con-
straints on the system: ne+ng=N, ne−ng=0, therefore we
need to introduce spinon which is invariant under both U�1�
charge rotation and orbital rotation generated with Tz. There-
fore in the proximity of the semimetal phase, the most natu-
ral liquid state with these constraints on the honeycomb lat-
tice is described by the Lagrangian with two U�1� gauge
fields

Lqed2 = �
a=1

2N


̄a��	�� − ia� − iA�
3 �3

2


a + ¯ �21�

with flavor symmetry SU�2N�+�SU�2N�−�Z2. The two
SU�2N�	 groups are generated by T	

A =Tew
A �1	�3� /2, re-

spectively, and the Z2 symmetry exchanges 	. The scaling
dimensions of gauge-invariant operators to the first order of
1 /N are

�qed2�
̄
� = 2 +
64

3N�2 , �qed2�
̄T	
A 
� = 2 −

32

3N�2 .

�22�

If we turn on the Z2 symmetry-breaking perturbation on the
lattice, as in Sec. III, the following term will be induced in
the field theory:

�L = s
̄�3�k��k − iak�
 −
s

2
iA�

3 
̄�k
 . �23�

The scaling dimension of this perturbation can be calculated
in the same way as Sec. III, and it is still irrelevant according
to the RG equation at the order of 1 /N. In the rest of this
paper this Z2 symmetry breaking will not be mentioned un-
less it is relevant.

Since the U�1��U�1� spin-orbital liquid only allows one
of the orbital triplet states, We can obtain the U�1��U�1�
spin-orbital liquid by higgsing two components of the SU�2�
gauge field in the U�1��SU�2� spin liquid discussed before.
We already showed that condensing a fundamental spinor of
the SU�2� gauge group will gap out all three components of
the gauge fields, but if we just condense an adjoint vector of
SU�2� gauge group, only two of the three components of the
gauge field will be gapped. Therefore starting with the
mother state U�1��SU�2� spin liquid, the U�1��U�1� spin-
orbital liquid can be obtained by condensing SU�2� vector
�� =z†�az instead of z itself. This transition can be described
by the field theory

L = Lew + �
i=1

3
1

g
	���i − �

j,k=1

3

�ijkA�
j �k
2

+ ¯ . �24�

�ijk is the total antisymmetric tensor, and also the adjoint
representation of SU�2� gauge group: tij

a = i�aij. Without loss
of generality, we take �� condense along the direction �0,0,1�,
then A�

1 and A�
2 are gapped out, while A�

3 remains gapless,
which is the same as the U�1��U�1� spin-orbital liquid. No-
tice that �� is not a vector of the physical SU�2�L symmetry.
To see this explicitly, we can rewrite �� as

�� = z†�� z � Tr�h†�zh�� � . �25�

h is the SU�2� rotor introduced in Eq. �4�. It is explicit in this
equation that �� is only invariant under the U�1� subgroup
generated by Tz, which is the physical symmetry of the sys-
tem with finite Jz. Similarly, if we condense the SU�2� vector
��1�Tr�h†�xh�� � from the mother state, we would obtain a
state with constraint Tx=0 on each site.

In the large-N limit the SU�2� gauge field is again sup-
pressed by the fermions, and the transition, Eq. �24�, is a 3D
O�3� transition. A similar phase transition was discussed in a
different context.20 This field theory was also used as a trial
unified theory of electroweak interaction in particle physics
and the gapless A�

3 was identified as the photon.33 However,
nature chooses a different theory. For larger k, condensing
adjoint vector of SU�k� gauge group always leaves some
components of the gauge field gapless.
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E. U(1) spin-charge-orbital liquid

Finally, if we only keep Jz large, while keeping U and J
both small, the only constraint on the system is Tj

z=0 on each
site. Then the candidate liquid state in this case is described
by the following Lagrangian:

Lqed3 = �
a=1

2N


̄a��	�� − iA�
3 �3

2


a + ¯ . �26�

This state has spin, charge, and two orbital states fluctuation,
therefore following our convention this state will be called
U�1� spin-charge-orbital liquid. This state can be obtained
from the U�1��U�1� spin-orbital liquid state by condensing
chargeon b. Moreover, this U�1� spin-charge liquid state can
also be obtained from condensing SU�2� gauge vector �� in
the SU�2� spin-charge liquid, Eq. �17�, which gaps out both
A�

1 and A�
2 . In the large-N limit, these two transitions belong

to the 3D XY and 3D O�3� universality class, respectively.
We can also drive a direct transition between the U�1�

spin-charge-orbital liquid and the semimetal phase, as long
as we can gap out the U�1� gauge field A�

3 in Eq. �26�. In the
previous paragraph we mentioned that the U�1� spin-charge-
orbital liquid state can be obtained from condensing vector ��
in the SU�2� spin-charge liquid, Eq. �17�. After the conden-
sation of �� , the degeneracy between the two CP�1� fields z1
and z2 is lifted, due to the gauge-invariance coupling �� ·z†�� z.
Therefore, z1 and z2 can condense separately but not to-
gether. If one of za condenses, it will Higgs the gauge field
A�

3 , and drive the system into the ordinary semimetal phase.
This transition can be described by the field theory

L = Lqed3 + ��� − iA�
3 �z12 + rz1z12 + ¯ . �27�

In the large-N limit this transition again belongs to the 3D
XY universality class.

III. PHASE DIAGRAM AND MULTICRITICAL POINTS

The phase diagram with two tuning parameters J and U
and weak constant Jz is depicted in Fig. 2�a�, with four dif-
ferent liquid phases. And there is a multicritical point with
both masses of z� and b vanish. At this multicritical point,
the field theory reads

L � Lew + ��� − ia��b2 + �	�� − �
l=1

3

iA�
l �l

2

z�2

+ ¯ .

�28�

In the large-N limit z and b behave like a 3D O�4� and 3D
XY transition, respectively. On top of this field theory, the
symmetry allows the interaction between b and z�, such as
z2b2. It is well known that at the 3D O�4� and XY transi-
tions, the scaling dimensions ��z2����b2��3 /2,34 there-
fore this term z2b2 is an irrelevant perturbation in the field
theory, Eq. �28�. Notice that, in principle, the velocity of b
and z are different, and the velocities will flow under RG
equation with finite N.

Figure 2�c� is the phase diagram with two tuning param-
eters J and U and strong constant Jz, where the orbital con-

straint Tz=0 is always imposed. Again there is a multicritical
point with both masses of z� and b vanish. The field theory at
this multicritical point is

L = Lqcd + �
i=1

3
1

g
	���i − �

j,k=1

3

�ijkA�
j �k
2

+ ��� − ia��b2 + ¯

�29�

and it is clear that the coupling �� 2b2 is irrelevant in the

large-N limit due to the fact that ���� 2����b2��3 /2.
The multicritical point in Fig. 2�b� with tuning parameters

Jz and U can be simply described by field theory ���

− ia��b2+ ���−A�
3 �z12, and it is stable against interactions

between b and z1. However, the multicritical point in Fig.
2�d� is no longer a simple combination between Eqs. �15�,
�20�, and �27� because the symmetry of the system allows the
coupling �� ·z†�� z. The fate of this relevant perturbation is
unclear at this point.

IV. SUMMARY AND EXTENSIONS

In summary, we studied five examples of liquid states
motivated by the orbital flavor and large spin symmetry of
alkaline-earth cold atoms. The schematic phase diagrams are
depicted in Fig. 2. Experimentally the spin correlation calcu-
lated in this paper can, in principle, be measured using the
momentum density distribution and noise correlation be-
tween atom spins proposed in Ref. 35, after releasing the
atoms from the trap. The VBS order which breaks the lattice
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FIG. 2. �Color online� Schematic phase diagrams with two tun-
ing parameters. All the phase transitions denoted as A are described
as a Higgs transition of U�1� slave rotor b, such as Eqs. �16� and
�19�; phase transitions denoted as B are Higgs transition of SU�2�
slave rotor h��, or CP�1� field z coupled with SU�2� gauge field,
such as Eqs. �15� and �20�; phase transitions denoted as C are Higgs
transition of SU�2� vector �� coupled with SU�2� gauge field, for
example, Eq. �24�. The phase transitions D are Higgs transition of
spinon z1 coupled with gauge field A�

3 . Notice that in �a� Jz is weak
while in �c� Jz is strong and the constraint Tz=0 is always imposed
on each site. The multicritical points in these phase diagrams are
discussed in Sec. III.
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translation symmetry also has algebraic correlation in the
liquid states. The two atoms within one valence bond have
stronger AF correlation J� t2 /U compared with other atoms,
and hence tend to move closer to each other from the minima
of the wells. This superlattice structure can also be measured
by the density correlation between atoms, which can be de-
tected by the noise correlation.36

It would also be interesting to test the results of this work
by numerically simulating model, Eq. �2�, as in Ref. 15,
since the system is fixed at half filling, the sign problem of
ordinary interacting fermion system is no longer a concern.
Analytically it is useful to pursue a slave rotor mean-field
calculation like Ref. 19. The liquid states discussed in our
paper is expected to occur in a finite region close to the Mott
transition, and by tuning U still larger there can be a transi-
tion from our states into a state with background nonzero
gauge flux through plaquette, or dimerized valence bond
solids.19 In our case the interplay between the U�1� and
SU�2� slave rotors make the mean-field calculation more
complicated, and more mean-field variational parameters
need to be introduced. We will study this calculation in fu-
ture.

In the current work, the universality class of all the phase
transitions between different liquid states was only discussed
in the large-N limit. Since the number of boson field at this
transition is not large, the 1 /N expansion at the transition is
actually nontrivial. Let us take the simplest quantum critical

theory, Eq. �16�, as an example. If there is no gauge field a�,
the transition is a 3D XY transition, whose critical exponents
can be obtained by summing over the Feynman diagrams to
all orders of an �=4−d expansion. The 1 /N correction from
the gauge-field propagator will enter the Feynman diagram at
every order of � expansion, therefore it is a nontrivial task
trying to sum over all the diagrams at 1 /N order. However, if
we generalize the boson number to large Nb, then a system-
atic expansion of both 1 /N and 1 /Nb can be straightfor-
wardly carried out, as was studied in Ref. 37.

In our paper we focused on the case with even N, because
in the real cold atom system under study, the nuclear spins
are always half integer,18 therefore N=2S+1 is always even.
With odd N, it is impossible to keep both half filling and also
SU�2� gauge singlet on every site, so whether our SU�2�
gauge formalism is applicable to odd N or not is unclear. Our
formalism can be applied to other multiorbital magnets, in-
cluding transition-metal oxides with orbital degeneracy. We
will explore this possibility in future.
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